organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 2-amino-4-isobutylthiophene-3-carboxylate

Quan-Bin Liao,^a Jie Huang,^a Zhen-Zhen Yang^b and Ming-Guo Liu^{a,b}*

^aCollege of Chemistry and Life Science, China Three Gorges University, Yichang 443002, People's Republic of China, and ^bKey Laboratory of Pesticides and Chemical Biology, Ministry of Education, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: mgliu0427@yahoo.com.cn

Received 3 July 2007; accepted 10 August 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.070; wR factor = 0.172; data-to-parameter ratio = 17.0.

The title compound, $C_{11}H_{17}NO_2S$, was synthesized by the Gewald reaction. Intramolecular $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds determine the conformation of the molecule. The packing of the molecules in the crystal structure is governed mainly by intermolecular $N-H\cdots O$ hydrogenbonding interactions.

Related literature

A related synthetic method is described by Sabnis *et al.* (1999). For related literature, see: Ding *et al.* (2004); Liu & Hu (2006); Liu & Liao (2006).

b = 9.4977(7) Å

c = 9.8629 (10) Å

 $V = 1254.48 (17) \text{ Å}^3$

 $\beta = 94.435(1)^{\circ}$

Experimental

Crystal data	
$C_{11}H_{17}NO_2S$	
$M_r = 227.32$	
Monoclinic, $P2_1/c$	
<i>a</i> = 13.4321 (7) Å	

Z = 4Mo $K\alpha$ radiation $\mu = 0.24 \text{ mm}^{-1}$

Data collection

Bruker SMART 4K CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *T*_{min} = 0.931, *T*_{max} = 0.954

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.070$ $wR(F^2) = 0.172$ S = 1.162458 reflections 145 parameters

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1B\cdotsO1^{i}$ $N1-H1A\cdotsO1$ $C6-H6\cdotsO2$ $C5-H5B\cdotsO2$	0.85 (3) 0.86 (3) 0.98 0.97	2.11 (3) 2.07 (3) 2.60 2.43	2.929 (3) 2.728 (3) 3.193 (4) 2.888 (3)	162 (3) 132 (3) 119 109

T = 293 (2) K

 $R_{\rm int}=0.044$

refinement

 $\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

 $0.30 \times 0.20 \times 0.20$ mm

12038 measured reflections

2458 independent reflections

1979 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Symmetry code: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2001).

We gratefully acknowledge financial support of this work by the Opening Foundation of the Key Laboratory of Three Gorges University of China (2006NP01).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2046).

References

Bruker (2001). *SMART* (Version 5.628) and *SAINT-Plus* (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.

Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.

- Liu, M.-G. & Hu, Y.-G. (2006). Acta Cryst. E62, 03206-03208.
- Liu, M.-G. & Liao, Q.-B. (2006). Acta Cryst. E62, 02214-02215.

Sabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem. 36, 333–345.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Sheldrick, G. M. (2001). *SHELXTL*. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2007). E63, o3824 [doi:10.1107/S160053680703975X]

Ethyl 2-amino-4-isobutylthiophene-3-carboxylate

Q.-B. Liao, J. Huang, Z.-Z. Yang and M.-G. Liu

Comment

The chemistry of 2-aminothiophenes has received much attention because of the convenient availability through the most versatile synthetic methods developed by Gewald (Sabnis *et al.*, 1999). Recently we have been interested in the synthesis of derivatives of heterocycles using the aza-Wittig reaction. Some related X-ray crystal structure reports for pyrimidinone derivatives have been published (Ding *et al.*, 2004; Liu & Hu, 2006; Liu & Liao, 2006). Here, the structure of the title compound, which may be used as a new intermediate synthesized *via* the Gewald reaction, is reported (Fig. 1). The thiophene ring system is coplanar. Intramolecular N—H…O and C—H…O hydrogen bonds (Table 1) determine the conformation of the molecule. As can be seen from the packing diagram (Fig. 2), intramolecular and intermolecular N—H…O hydrogen bonds (Table 1) link the molecules.

Experimental

To a solution of ethyl cyanoacetate(1.13 g, 10 mmol), sulfur (0.32 g, 10 mmol) and 4-methylpentan-2-one (1.00 g, 10 mmol) in anhydrous ethanol (20 ml) was added in morpholine (0.8 ml). The mixture was stirred for 6 h at 313 - 323 K. The solution was concentrated under reduced pressure and the residue was recrystallized from dichloromethane and ethanol (1:2 v/v) to give the title compound. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from a mixed solvent of ethanol and dichloromethane (1:1 v/v) at room temperature.

Refinement

All H atoms were located in difference maps and treated as riding atoms, except those at N1, with the following distance restraints: C—H = 0.93 Å, U_{iso} =1.2 U_{eq} (C) for Csp², C—H = 0.98 Å, U_{iso} = 1.2 U_{eq} (C) for CH, C—H = 0.97 Å, U_{iso} = 1.2 U_{eq} (C) for CH₂, N—H = 0.86 Å, U_{iso} = 1.2 U_{eq} (N) for NH₂, C—H = 0.96 Å, U_{iso} = 1.5 U_{eq} (C) for CH₃.

Figures

Fig. 1. A view of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level, intramolecular hydrogen bonds are shown in dashed lines.

Fig. 2. The packing in the crystal structure, showing the N—H…O hydrogen bonds as dashed lines.

Ethyl 2-amino-4-isobutylthiophene-3-carboxylate

Crystal data	
C ₁₁ H ₁₇ NO ₂ S	$F_{000} = 488$
$M_r = 227.32$	$D_{\rm x} = 1.204 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3288 reflections
<i>a</i> = 13.4321 (7) Å	$\theta = 2.5 - 27.0^{\circ}$
<i>b</i> = 9.4977 (7) Å	$\mu = 0.24 \text{ mm}^{-1}$
c = 9.8629 (10) Å	T = 293 (2) K
$\beta = 94.4350 \ (10)^{\circ}$	Block, colorless
$V = 1254.48 (17) \text{ Å}^3$	$0.30\times0.20\times0.20\ mm$
Z = 4	

Data collection

Bruker SMART 4K CCD area-detector diffractometer	2458 independent reflections
Radiation source: fine-focus sealed tube	1979 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.044$
T = 292(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -16 \rightarrow 16$
$T_{\min} = 0.931, \ T_{\max} = 0.954$	$k = -11 \rightarrow 11$
12038 measured reflections	$l = -11 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.070$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.172$	$w = 1/[\sigma^2(F_o^2) + (0.08P)^2 + 0.4453P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.16	$(\Delta/\sigma)_{\rm max} = 0.001$
2458 reflections	$\Delta \rho_{max} = 0.39 \text{ e } \text{\AA}^{-3}$
145 parameters	$\Delta \rho_{min} = -0.22 \text{ e} \text{ Å}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

	x	у	Z		$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.1600 (2)	0.2199 (3)	0.57	726 (3)	0.0552 (8)
H1	0.1868	0.1542	0.63	351	0.066*
C2	0.1898 (2)	0.3551 (3)	0.57	718 (3)	0.0440 (6)
C3	0.13509 (18)	0.4346 (2)	0.46	638 (3)	0.0389 (6)
C4	0.0652 (2)	0.3515 (3)	0.39	900 (3)	0.0423 (6)
C5	0.2705 (2)	0.4095 (3)	0.67	717 (3)	0.0540 (7)
H5A	0.2773	0.3455	0.74	485	0.065*
H5B	0.2498	0.5000	0.70	053	0.065*
C6	0.3726 (2)	0.4269 (3)	0.61	161 (4)	0.0634 (9)
H6	0.3654	0.4930	0.53	398	0.076*
C7	0.4119 (3)	0.2894 (5)	0.56	640 (5)	0.1067 (15)
H7A	0.4772	0.3041	0.53	334	0.160*
H7B	0.3678	0.2559	0.48	898	0.160*
H7C	0.4157	0.2210	0.63	359	0.160*
C8	0.4457 (3)	0.4899 (5)	0.72	246 (5)	0.1052 (15)
H8A	0.4205	0.5786	0.75	538	0.158*
H8B	0.5091	0.5041	0.68	878	0.158*
H8C	0.4538	0.4269	0.80	008	0.158*
C9	0.1436 (2)	0.5818 (3)	0.42	294 (3)	0.0456 (7)
C10	0.2205 (3)	0.8022 (3)	0.48	833 (4)	0.0785 (11)
H10A	0.1593	0.8524	0.49	976	0.094*
H10B	0.2351	0.8148	0.38	893	0.094*
C11	0.3024 (3)	0.8574 (4)	0.57	739 (5)	0.0965 (14)
H11A	0.2876	0.8437	0.66	667	0.145*
H11B	0.3104	0.9561	0.55	569	0.145*
H11C	0.3630	0.8088	0.55	577	0.145*
N1	-0.0020 (2)	0.3892 (3)	0.28	887 (3)	0.0533 (7)
H1B	-0.039 (2)	0.330 (3)	0.24	45 (3)	0.064*
H1A	0.003 (2)	0.476 (4)	0.26	64 (3)	0.064*
01	0.09739 (17)	0.6374 (2)	0.33	336 (2)	0.0669 (6)
O2	0.20850 (15)	0.65355 (18	3) 0.51	122 (2)	0.0583 (6)
S1	0.06791 (6)	0.17970 (7)	0.44	4771 (8)	0.0563 (3)
Atomic displacem	ent parameters (.	(A^2)			
	U^{11}	U ²²	U ³³	U^{12}	U^{13}
C1	0.071 (2)	0.0348 (14)	0.0594 (18)	0.0013 (13)	0.0021 (15)
C2	0.0506 (15)	0.0360 (13)	0.0454 (15)	0.0012 (11)	0.0045 (12)
C3	0.0460 (14)	0.0267 (12)	0.0439 (14)	0.0027 (10)	0.0022 (11)
C4	0.0532 (16)	0.0288 (12)	0.0448 (15)	0.0028 (10)	0.0036 (12)

C5

C6

C7

0.0629 (19)

0.0577 (19)

0.076 (3)

0.0486 (16)

0.0528 (18)

0.088 (3)

0.0484 (17)

0.077 (2)

0.157 (5)

0.0011 (13)

0.0024 (14)

0.021 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

 U^{23}

-0.0096(14)

-0.0096 (16)

0.011 (3)

0.0092 (13) 0.0013 (11) -0.0006 (10) -0.0028 (10)

0.0034 (13)

0.0093 (16)

-0.009(3)

supplementary materials

C9	0.077(2)	0.115(4)	0.119 (4)	0.022(2)	0.028(2)	0.004(2)
	0.077(3)	0.113(4) 0.0240(12)	0.118(4)	-0.022(2)	-0.028(3)	0.004(3)
C9	0.0439(13)	0.0340(13)	0.0300(17)	0.0041(11)	-0.0028(13)	0.0018(12)
C10	0.082(2)	0.0294(13)	0.122(3)	-0.0007(14)	-0.008(2)	0.0089(17)
N1	0.089(3)	0.0433(18)	0.134(4)	-0.0178(18)	-0.017(3)	-0.006(2)
NI Ol	0.0038(10)	0.0347(12)	0.0587(16)	-0.0010(11)	-0.0130(13)	-0.0068(11)
01	0.0819(15)	0.0334(10)	0.0808(16)	0.0012(10)	-0.0236(12)	0.0112 (10)
02	0.0646 (13)	0.0259 (9)	0.0815 (15)	-0.0064 (8)	-0.0132(11)	0.0024 (9)
51	0.0734 (6)	0.0293 (4)	0.0650 (5)	-0.0083(3)	-0.0026 (4)	0.0018 (3)
Geometric paran	neters (Å, °)					
C1-C2		1 345 (4)	С7-	–H7B	0.9600)
C1 - S1		1.720 (3)	C7-	-H7C	0.9600)
C1—H1		0.9300	C8-	-H8A	0.9600	
C2-C3		1 457 (3)	C8-	-H8B	0.9600)
$C_2 = C_5$		1.500 (4)	C8-	-H8C	0.9600)
$C_3 - C_4$		1 389 (4)	C9-	-01	1 211	(3)
C3-C9		1.509 (1)	C9-	-02	1.211(3) 1.334(3)	
C4—N1		1 341 (4)	C10	-02 02	1.554(5) 1.452(3)	
C4 = S1		1.5 (1)	C10		1.432(3)	
C5-C6		1.726(3) 1 524(4)	C10	—H10A	0.9700	
С5—Н5А		0.9700	C10	H10B	0.9700	
C5_H5B		0.9700	C10	H11A	0.9600	
C6-C7		1 513 (5)	C11	H11B	0.9600	
C6-C8		1.519 (5)	C11	—H11C	0.9600	
С6—Н6		0.9800	N1 H1P		0.85 (3)	
С7—Н7А		0.9600	NI—HIA		0.86 (1	3)
C2-C1-S1		113.9 (2)	H7A	—С7—H7С	109.5	,
С2—С1—Н1		123.0	H7E	3 —С7—Н7С	109.5	
S1—C1—H1		123.0	C6-	C8H8A	109.5	
C1—C2—C3		111.4 (2)	C6–	C8H8B	109.5	
C1—C2—C5		121.6 (3)	H8A	— С8—Н8В	109.5	
C3—C2—C5		126.9 (2)	C6-	C8H8C	109.5	
C4—C3—C9		119.2 (2)	H8A	— С8—Н8С	109.5	
C4—C3—C2		111.8 (2)	H8E	3— С8—Н8С	109.5	
С9—С3—С2		128.9 (2)	01-	С9О2	121.7	(2)
N1—C4—C3		128.8 (2)	O1-	С9С3	124.1	(3)
N1—C4—S1		119.6 (2)	O2–	С9С3	114.2 (2)	
C3—C4—S1		111.54 (19)	O2-	C10C11	108.6	(3)
C2—C5—C6		115.2 (2)	O2–	C10H10A	110.0	
С2—С5—Н5А		108.5	C11		110.0	
С6—С5—Н5А		108.5	O2-	C10H10B	110.0	
С2—С5—Н5В		108.5	C11		110.0	
С6—С5—Н5В		108.5	H10	A—C10—H10B	108.3	
H5A—C5—H5B		107.5	C10	—C11—H11A	109.5	
C7—C6—C8		110.8 (3)	C10	—C11—H11B	109.5	
C7—C6—C5		112.1 (3)	H11	A—C11—H11B	109.5	
C8—C6—C5		109.9 (3)	C10	—С11—Н11С	109.5	
С7—С6—Н6		108.0	H11	A—C11—H11C	109.5	

С8—С6—Н6	108.0	H11B-C11-H11C	109.5
С5—С6—Н6	108.0	C4—N1—H1B	122 (2)
С6—С7—Н7А	109.5	C4—N1—H1A	114 (2)
С6—С7—Н7В	109.5	H1B—N1—H1A	123 (3)
H7A—C7—H7B	109.5	C9—O2—C10	117.0 (2)
С6—С7—Н7С	109.5	C1—S1—C4	91.27 (13)
S1—C1—C2—C3	0.3 (3)	C2—C5—C6—C7	-59.4 (4)
S1—C1—C2—C5	-179.1 (2)	C2—C5—C6—C8	176.9 (3)
C1—C2—C3—C4	0.7 (3)	C4—C3—C9—O1	-4.7 (4)
C5—C2—C3—C4	-179.9 (2)	C2—C3—C9—O1	176.8 (3)
C1—C2—C3—C9	179.3 (3)	C4—C3—C9—O2	176.0 (2)
C5—C2—C3—C9	-1.4 (4)	C2—C3—C9—O2	-2.5 (4)
C9—C3—C4—N1	-2.6 (4)	O1—C9—O2—C10	0.8 (4)
C2—C3—C4—N1	176.1 (3)	C3—C9—O2—C10	-179.9 (3)
C9—C3—C4—S1	179.87 (19)	С11—С10—О2—С9	-173.3 (3)
C2—C3—C4—S1	-1.4 (3)	C2-C1-S1-C4	-1.0 (2)
C1—C2—C5—C6	101.9 (3)	N1—C4—S1—C1	-176.5 (2)
C3—C2—C5—C6	-77.4 (4)	C3—C4—S1—C1	1.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot\!\!\cdot$
N1—H1B····O1 ⁱ	0.85 (3)	2.11 (3)	2.929 (3)	162 (3)
N1—H1A…O1	0.86 (3)	2.07 (3)	2.728 (3)	132 (3)
С6—Н6…О2	0.98	2.60	3.193 (4)	119
С5—Н5В…О2	0.97	2.43	2.888 (3)	109
Symmetry codes: (i) $-x$, $y-1/2$, $-z+1/2$.				

